skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mach, Robert H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 27, 2026
  2. Fluorescent small molecules are powerful tools for imaging α-synuclein pathology in vitro and in vivo . In this work, we explore benzofuranone as a potential scaffold for the design of fluorescent α-synuclein probes. These compounds have high affinity for α-synuclein, show fluorescent turn-on upon binding to fibrils, and display different binding to Lewy bodies, Lewy neurites and glial cytoplasmic inclusion pathologies in post-mortem brain tissue. These studies not only reveal the potential of benzofuranone compounds as α-synuclein specific fluorescent probes, but also have implications for the ways in which α-synucleinopathies are conformationally different and display distinct small molecule binding sites. 
    more » « less
  3. Small molecules that bind with high affinity and specificity to fibrils of the α-synuclein (αS) protein have the potential to serve as positron emission tomography (PET) imaging probes to aid in the diagnosis of Parkinson's disease and related synucleinopathies. To identify such molecules, we employed an ultra-high throughput in silico screening strategy using idealized pseudo-ligands termed exemplars to identify compounds for experimental binding studies. For the top hit from this screen, we used photo-crosslinking to confirm its binding site and studied the structure–activity relationship of its analogs to develop multiple molecules with nanomolar affinity for αS fibrils and moderate specificity for αS over Aβ fibrils. Lastly, we demonstrated the potential of the lead analog as an imaging probe by measuring binding to αS-enriched homogenates from mouse brain tissue using a radiolabeled analog of the identified molecule. This study demonstrates the validity of our powerful new approach to the discovery of PET probes for challenging molecular targets. 
    more » « less